
© 2009 ESRD, Inc. All Rights Reserved. StressCheck® is a registered trademark of ESRD, Inc.

Basics of StressCheck + AFGROW
Application Development:
An Engineering Perspective

Brent Lancaster

ESRD, Inc.

09/15/2011

Overview

Ç What is StressCheck?
Ç StressCheck and Fracture Mechanics
Ç StressCheck API and COM
ÅWhat is a COM API?

Ç StressCheck and AFGROW
ÅStressCheck->COM->AFGROW

Ç Data Flow for Typical StressCheck/AFGROW Plug-
Ins

Ç Case Study: Cracked Lug with Propped Hole
ÅBuilding a StressCheck Plug-in

Ç Addendum: Design of 3D Fracture Mechanics
Meshes

What is StressCheck?

Ç StressCheck is an advanced FEA software tool developed by ESRD, Inc.
of St. Louis, MO
Å Current Version: 9.2
Å Primary Customers: Major Aircraft OEMs and Defense/Armed Forces

Ç StressCheckçisçbasedçonçtheçïp-versionð
Å DOF increased by increasing polynomial order of elements instead of

adding midside nodes or refining the mesh
Å Hierarchic nature of solutions allows for V&V and quality assurance

ÁVerification: Solving the equations right (convergence)
ÁValidation: Solving the right equations (experimental observations)

Ç Primary applications of StressCheck:
Å High-fidelity stress analysis
Å Detailed fracture mechanics extractions/crack analysis
Å Multi -body contact analysis
Å Plasticity analysis
Å Composite material analysis
Å Development of advanced engineering applications (i.e. SFAT)
Å Combinations of the above

StressCheck and Fracture
Mechanics

Ç StressCheck contains
many advanced features
which aid the DTA
analyst in fracture
mechanics studies,
including:
Å3D Crack Insertion and

Advanced Automeshing

ÅExtraction of robust Stress
Intensity Factors and
Separated Energy Release
Rates (SERR)

Å2D Crack Path Analysis

What is a COM API?

Ç Component Object Model (COM)
Å Formal Definition (Wiki)

ÁA binary-interface standard for software componentry introduced by Microsoft
in 1993.

Å It is used to enable interprocess communication and dynamic object
creation in a large range of programming languages.

Å It is a platform for the realization of Object-Oriented Development and
Deployment.

Ç Application Programming Interface (API)
Å Formal Definition (Wiki)

ÁAn interface in computer science that defines the ways by which an
application program may request services from libraries and/or operating
systems.

Å An API determines the vocabulary and calling conventions the
programmer should employ to use the services

Å It may include specifications for routines, data structures, object classes
and protocols used to communicate between the requesting software
and the library

StressCheck and COM

Ç The StressCheck COM API allows users access to all of the
objects, methods and properties found within the
StressCheck GUI
ÅYou may build, solve and extract information as you would

interactively

Ç The major benefit is that the COM API allows for external
applications to communicate with StressCheck, and vice
versa
ÅVisual Basic/Visual Studio
ÅExcel
ÅMATLAB
ÅPython
ÅAFGROW
ÅAny other COM-enabled utility/language

Ç This means automation and scripting is possible!

StressCheck and AFGROW

Ç Since StressCheck and AFGROW are COM-enabled,çïplug-inðçmodulesç
can be written to perform advanced/custom computations in the event
that existing solutions are unavailable or inappropriate for the analysis
Å StressCheck/AFGROW Plug-ins allow StressCheck FEA K-solutions to be

computed and passed directly to AFGROW for life prediction

Ç Plug-in development typically requires Microsoft Visual Studio 2008 (or
equivalent) and .NET Framework, in addition to AFGROW and
StressCheck
Å VB.NET or C# recommended

Å Plug-insçareçconfiguredçtoçappearçinçAFGROWçunderçïPlug-InçModelsðçbyç
modifying afgrow.exe.config file

Å Plug-in is typically installed with simple setup kit

Ç Consult with LexTech, Inc. for additional details

Data Flow for a Typical
StressCheck/AFGROW Plug-In

Data Flow for a Typical
StressCheck/AFGROW Plug-In

Case Study: Cracked Lug with
Loaded Pin
Ç Problem Definition :
Å Planar (constant thickness) lug with

applied fastener loading
Å Lug bore is propped with neat,

clearance or interference fit fastener
Å Crack is to initiate along lug bore
Å All relevant inputs to be parametric

Ç Goal:
Å To determine the location of the

maximum first principal stress in the
lug bore, initiate a crack at that
location, and propogate crack until
user-defined failure

Ç Utilizes Scenario 2 (i.e. Interactive
computation)

Case Study: Cracked Lug with Loaded Pin
Process Outline

Ç Step 1: Define parametric StressCheck Handbook models, and
ensure these models are valid for a wide range of inputs
ÅThese models will be read into the plug-in during run-time
Å In this case, 2 Handbook models were defined:

ÁHand-mesh pristine version (no crack)
ÁïCrack-readyðçAFGROWçversionç(toçbeçautomeshed by StressCheck)

Ç Step 2: Using Visual Studio 2008 or 2010, create a new solution
and add a VB .NET project
ÅMake sure a reference to StressCheck DLL library is added to the

VB project

Ç Step 3: Add a VB class to the project, ensure the class is given an
appropriateçïProgIDð
ÅTheçïProgIDðçwillçhelpçAFGROWçunderstandçwhatçplug-in should

be called, and should also be listed in the afgrow.exe.config file
included with the installation package

Case Study: Cracked Lug with Loaded Pin
Process Outline (cont.)

Ç Step 4: Implement the AfgrowBetaPlugin library in the
VB class
ÅRelevant properties/subroutines will automatically be

generated when implementing AfgrowBetaPlugin
ÁInstructions to tell AFGROW which parameters can be passed to

StressCheck, how events are handled, etc.

ÁNot all functions/subroutines are necessary, as we will find

Ç Step 5: Define a VB class for cracks in the VB project
ÅThis class will be used for defining AFGROW cracks in the

plug-in VB class

Ç Step 6: Define parameters for plug-in class, and
populate the AfgrowBetaPlugin functions/subroutines
ÅParameters will be exposed through AFGROW GUI

Case Study: Cracked Lug with Loaded Pin
Process Outline (cont.)

Ç Step 7: Create a new AFGROW crack using
Afgrow.AfgrowPredictManage

ÅManages current cracks in AFGROW model

Ç Step 8: Define local variables for plug-in class
inputs/outputs and set default parameter values

Ç Step 9: Import the StressCheck library and define
local StressCheck variables

Ç Step 10: Incorporate StressCheck COM API
functions to drive crack embedding and solution

Case Study: Cracked Lug with Loaded Pin
Process Outline (cont.)

Ç Stepç11:çExtractçSIFòsçfromçStressCheck

Ç Step 12: Compute next crack increment in
AFGROW

Case Study: Cracked Lug with Loaded Pin
Step 1: Handbook Model Design

Ç Model 1: pristine model (no crack) for computation of max
S1 location
Åbulkhead_lug_handmesh.sci

Fastener

Element

Handmesh w/ h-Discretization

Case Study: Cracked Lug with Loaded Pin
Step 1 (cont.): Handbook Model Design

Ç Model 2: AFGROW ready model (no crack) for computation
ofçSIFòs
Åbulkhead_lug_afgrow_ready.sci

ÅMost of model generated by plug-in

Crack embedded

during solution

Step 2: Start a new solution and define a
VB.NET Windows Forms Project

Stepç2ç(cont.):çAddçïStressCheckç
DLLðçReferenceçtoçProject

Note: This library will be imported to the plug-

in class as ñStressCheckXò so we can use

StressCheck Black Box (SCBB) functions

Step 3: Add a New VB Class and
setçupçïProgIDðçandçconfig file

Plug-in VB class

Plug-in VB project

Name the Class and Assign ñProgIDò (in this case,

ñStressCheckCrackedLug.StressCheckCrackedLugClassò

Afgrow.exe.config

contents

Step 4: Implementing the
AfgrowBetaPlugin library in the VB class

Step 5: Define VB class for cracks in VB
project

Use an instance of the class in the ñStressCheckCrackedLugClass.vbò

Step 6: Populate AfgrowBetaPlugin
Functions and Subroutines

SC functions

Step 6: Populate AfgrowBetaPlugin
Functions and Subroutines

Parameters will be exposed

through AFGROW GUI

Step 6: Populate AfgrowBetaPlugin
Functions and Subroutines

Parameters will be exposed

through AFGROW GUI

Step 6: Populate AfgrowBetaPlugin
Functions and Subroutines

Parameters will be exposed

through AFGROW GUI

Step 6: Populate AfgrowBetaPlugin
Functions and Subroutines

Parameters will be exposed

through AFGROW GUI

Step 6: Populate AfgrowBetaPlugin
Functions and Subroutines

é

Parameters will be exposed

through AFGROW GUI

Step 7: Create a new AFGROW crack using
Afgrow.AfgrowPredictManage

Step 8: Define local variables for plug-in class
inputs/outputs and set default parameter values

ñNewò subroutine

used to create a new

Crack object and set

default parameters

Step 9: Import StressCheck library and
define local StressCheck variables

The StressCheck objects will

be called by the AFGROW

plug-in during run time

Step 10: Calculate the crack
location from Max S1
Ç CalculateCrackLoc sub uses

Å SCStart

Á Starts StressCheck and opens a new
database

Á Note: StressCheck instance will be
used for duration of plug-in life

Å ReadModel

Á Reads .sci files

Å UpdateParameters

Á Based on Afgrow GUI input, updates
SC model parameters

Å ComputeCrackAnglefromS1

Á Uses max S1 information to compute
location of crack

Stepç11:çCalculateçSCçSIFòsçfromç
AFGROW crack information
Ç CalculateSIFs sub uses

Å CreatePoints
ÁCreates points representing

current crack shape

Å CreateSplineAndImprint
ÁCreates a spline curve from

points

ÁEmbeds spline curve in lug part

Å FastenerSetup
ÁAdds a fastener element to hole

Å MeshWithCrack
ÁAutomeshes lug with crack

Å SolveModel
ÁSolves fastener analysis

Å ExtractK1K2
ÁExtractsçSIFòs

Å SCEnd
ÁCloses StressCheck

Stepç12:çPassçSIFòsçtoçAFGROWçforç
crack increment calcs

Using the Cracked Lug Plug-in

The plug-in DLL, once

compiled, must be

registered in order to

appear in ñPlug-In Modelsò

Using the Cracked Lug Plug-in

Using the Cracked Lug Plug-in

Using the Cracked Lug Plug-in

Using the Cracked Lug Plug-in

